Review Rotation

1. Find a buddy. 2. Move around to each of the 4 stations. **Buddy A – complete the odd #s. Buddy B – complete the even #s. Check each other's work!!**

©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Adapted from Various Sources

(MCC9-12.A.APR.1; MCC9-12.A.APR.3; MCC9-12.F.IF.7; MCC9-12.F.IF.7c; MCC9-12.A.REI.2)

Directions: Use the graph to analyze the function.

1. Domain:
2. Range:
3. Vertex:
4. Increasing:
5. Decreasing:
6. X-intercepts:
7. Y-intercept:
8. End behavior:
9. Minimum:
10. Maximum:

Directions: Use the graph to analyze the function.

Directions: Given the transformation, write the equation.

- 11. Transform the equation $f(x) = x^2$ so that the graph is shifted to the right 5 units and shifted down 8 units:
- 12. Transform the equation $f(x) = \sqrt{x}$ so that the graph is reflected across the x-axis and shifted to the left 3 units:
- 13. Transform the equation f(x) = |x| so that the graph is shifted to the right 1 unit, shifted down 2 units, and vertically stretched by a factor of 3:
- 14. Transform the equation $f(x) = x^3$ so that the graph is reflected across the x-axis, shifted up 11 units, and shifted to the left 6 units:

Directions: Given the transformation, write the equation.

- 11. Transform the equation $f(x) = x^2$ so that the graph is shifted to the right 5 units and shifted down 8 units:
- 12. Transform the equation $f(x) = \sqrt{x}$ so that the graph is reflected across the x-axis and shifted to the left 3 units: $g(x) = -\sqrt{x+3}$
- 13. Transform the equation f(x) = |x| so that the graph is shifted to the right 1 unit, shifted down 2 units, and vertically stretched by a factor of 3:

g(x) = 3|x-1| - 214. Transform the equation $f(x) = x^3$ so that the graph is reflected across the x-axis, shifted up 11 units, and shifted to the left 6 units: $g(x) = -(x+6)^3 + 11$

Directions: Tell whether it is even, odd, or neither by examining the equations.

19. $f(x) = 2x^2 - 4$ **20.** $f(x) = 4x^2 + 3x - 1$

21. $f(x) = x^3 - 2x + 1$ **22.** $f(x) = x^3 - x$

Directions: Tell whether it is even, odd, or neither by examining the graphs.

Directions: Tell whether it is even, odd, or neither by examining the equations.

19.
$$f(x) = 2x^2 - 4$$
 20. $f(x) = 4x^2 + 3x - 1$

 even
 neither

 21. $f(x) = x^3 - 2x + 1$
 22. $f(x) = x^3 - x$

 neither
 odd

Directions: Factor completely.

23.
$$x^2 - 2x - 24$$

24. $x^2 - 49$
25. $2x^2 - 14x + 20$
26. $3x^2 - 48$
27. $4x^2 - 12x + 36$
28. $x^2 + 15x + 50$

Directions: Factor completely.

23. $x^2 - 2x - 24$ (x-6)(x+4) 24. $x^2 - 49$ (x-7)(x+7) 25. $2x^2 - 14x + 20$ 2(x-5)(x-2) 26. $3x^2 - 48$ 3(x-4)(x+4) 27. $4x^2 - 12x + 36$ Not factorable 28. $x^2 + 15x + 50$ (x+10)(x+5)

Directions: Simplify the following expressions.

29.
$$(4x^3 + 3x^2 - 7x) + (7x^2 + 2x - 10)$$

30. $(x^2 + 4x^3 - 7x - 5) - (3x^2 - 4 - 4x + 6x^3)$
31. $(3x + 5)(2x - 7)$

32. $(2x - 3)^2$

Directions: Simplify the following expressions.

29.
$$(4x^3 + 3x^2 - 7x) + (7x^2 + 2x - 10)$$

 $4x^3 + 10x^2 - 5x - 10$
30. $(x^2 + 4x^3 - 7x - 5) - (3x^2 - 4 - 4x + 6x^3)$
 $-2x^3 - 2x^2 - 3x - 1$
31. $(3x + 5)(2x - 7)$
 $6x^2 - 11x - 35$
32. $(2x - 3)^2$
 $4x^2 - 12x + 9$

33. $x^2 + 5x + 6 = 0$

33. $x^2 - 3x - 10 = 0$

33. $x^3 + 2x^2 - 8x = 0$

34. $x^2 - 10x + 24 = 0$

33.
$$x^{2} + 5x + 6 = 0$$

 $(x+3)(x+2) = 0$
 $x = -3$ $x = -2$
33. $x^{2} - 3x - 10 = 0$
 $(x-5)(x+2) = 0$
 $x = 5$ $x = -2$
33. $x^{3} + 2x^{2} - 8x = 0$
 $x(x+4)(x-2) = 0$
 $x = 0$ $x = -4$ $x = 2$
34. $x^{2} - 10x + 24 = 0$ $(x-12)(x+2) = 0$
 $x = 12$ $x = -2$

$35.4\sqrt{x} + 16 = 8 \qquad 36.3\sqrt{x} - 2 + 5 = 11$

 $37.2\sqrt{x-3} + 6 = 12 \ 38.2\sqrt{x} - 24 = 0$

 $37.2\sqrt{x-3} + 6 = 12$ $38.2\sqrt{x} - 24 = 0$ x = 12 x = 144

^{39.}
$$\frac{x}{6} - \frac{2}{3x} = \frac{1}{2}$$
 ^{40.} $\frac{8}{x+3} = \frac{x+1}{x}$

$$\frac{41}{4} \cdot \frac{x}{4} - \frac{2}{x} = \frac{1}{2}$$

42.
$$\frac{6}{x+2} = \frac{x+1}{x}$$

$$\frac{43}{x+1} = \frac{3}{x+2}$$

44.
$$\frac{4}{x-2} + \frac{2}{3} = \frac{6}{x-2}$$

^{39.}
$$\frac{x}{6} - \frac{2}{3x} = \frac{1}{2}$$

x = -1 **x** = 4
^{41.} $\frac{x}{4} - \frac{2}{x} = \frac{1}{2}$
x = -2 **x** = 4
^{43.} $\frac{4}{x+1} = \frac{3}{x+2}$
x = -5

- $\frac{40.}{x+3} = \frac{x+1}{x}$
- x = 1 x = 3

42.
$$\frac{6}{x+2} = \frac{x+1}{x}$$

x = 1 x = 2

$$44. \quad \frac{4}{x-2} + \frac{2}{3} = \frac{6}{x-2}$$

 $\mathbf{x} = \mathbf{5}$